skip to main content


Search for: All records

Creators/Authors contains: "Chen, Huili"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes AdaTest, a novel adaptive test pattern generation framework for efficient and reliable Hardware Trojan (HT) detection. HT is a backdoor attack that tampers with the design of victim integrated circuits (ICs). AdaTest improves the existing HT detection techniques in terms of scalability and accuracy of detecting smaller Trojans in the presence of noise and variations. To achieve high trigger coverage, AdaTest leverages Reinforcement Learning (RL) to produce a diverse set of test inputs. Particularly, we progressively generate test vectors with high ‘reward’ values in an iterative manner. In each iteration, the test set is evaluated and adaptively expanded as needed. Furthermore, AdaTest integrates adaptive sampling to prioritize test samples that provide more information for HT detection, thus reducing the number of samples while improving the samples’ quality for faster exploration. We develop AdaTest with a Software/Hardware co-design principle and provide an optimized on-chip architecture solution. AdaTest’s architecture minimizes the hardware overhead in two ways: (i) Deploying circuit emulation on programmable hardware to accelerate reward evaluation of the test input; (ii) Pipelining each computation stage in AdaTest by automatically constructing auxiliary circuit for test input generation, reward evaluation, and adaptive sampling. We evaluate AdaTest’s performance on various HT benchmarks and compare it with two prior works that use logic testing for HT detection. Experimental results show that AdaTest engenders up to two orders of test generation speedup and two orders of test set size reduction compared to the prior works while achieving the same level or higher Trojan detection rate. 
    more » « less
  2. Recent advances in model piracy have uncovered a new security hole for malicious attacks endangering the Intellectual Property (IP) of Deep Learning (DL) systems. This manuscript features our research titled “DeepAttest: An End-toEnd Attestation Framework for Deep Neural Networks” [1] that is selected for the 2021 Top Picks in hardware and embedded security. DeepAttest is the first end-to-end framework that achieves reliable and efficient IP protection of DL devices with hardware-bounded usage control. We leverage device-specific model fingerprinting and Trusted Execution Environment (TEE) to ensure that only DL models with the device-specific fingerprint can run inference on protected hardware 
    more » « less
  3. Prior work in affect-aware educational robots has often relied on a common belief that the relationship between student affect and learning is independent of agent behaviors (child’s/robot’s) or unidirectional (positive/negative but not both) throughout the entire student-robot interaction.We argue that the student affect-learning relationship should be interpreted in two contexts: (1) social learning paradigm and (2) sub-events within child-robot interaction. In our paper, we examine two different social learning paradigms where children interact with a robot that acts either as a tutor or a tutee. Sub-events within child-robot interaction are defined as task-related events occurring in specific phases of an interaction (e.g., when the child/robot gets a wrong answer). We examine subevents at a macro level (entire interaction) and a micro level (within specific sub-events). In this paper, we provide an in-depth correlation analysis of children’s facial affect and vocabulary learning. We found that children’s affective displays became more predictive of their vocabulary learning when children interacted with a tutee robot who did not scaffold their learning. Additionally, children’s affect displayed during micro-level events was more predictive of their learning than during macro-level events. Last, we found that the affect-learning relationship is not unidirectional, but rather is modulated by context, i.e., several affective states facilitated student learning when displayed in some sub-events but inhibited learning when displayed in others. These findings indicate that both social learning paradigm and sub-events within interaction modulate student affect-learning relationship. 
    more » « less